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Second-order corrections to the electronic energy due to the electron-phonon interaction have been ob
tained by several authors using the formalism of the adiabatic theory. Their result differs from the commonly 
accepted expression first given by Frohlich in 1950. It will be demonstrated in the present paper that terms 
were omitted in the adiabatic theories which reconcile the two results. In addition, a comparison will be made 
between this paper and a recent paper along similar lines by Englman. 

SEVERAL authors1-6 have treated the electron-
phonon interaction problem from a point of view 

that is more commonly used in molecular theory, the 
Born-Oppenheimer adiabatic theory.7 In these theories 
the form of the electron-phonon interaction term differs 
from that used by Frohlich8 in 1950 to calculate the 
second-order correction to the electronic energy E2. A 
corresponding difference in the form of E2 results, the 
implications of which are discussed briefly in Ref. 1 and 
extensively in Ref. 4. Since the Frohlich expression 
agrees with that obtained from the later, more careful 
derivation of Nakajima9—as extended by Bardeen and 
Pines10 (Refs. 9 and 10 are discussed in a review article 
by Bardeen11)—a disagreement exists between terms 
calculated by two apparently equally valid approxi
mations. It will be shown in this paper that the dis
crepancy can be resolved by noting that the authors of 
Refs. 1-4 have omitted a term while the author of 
Ref. 6 obtains the missing term but does not compute 
E2. A similar approach was taken in a recent paper by 
Englman12; several points at which we disagree with 
Englman's argument will be discussed. 

The particular presentation of the adiabatic theory 
which is used in Ref. 12 is that given by Ziman.1 This 
approach will be followed here. The part of the total 
Hamiltonian, 

H=Y. ( l / 2 w ) ^ + E (1/2M)P2 

+ U(X)+Vc(x)+V(X,x), (1) 

which depends on electronic coordinates is used to 
define electronic eigenstates ypxix) which depend 
parametrically on the nuclear coordinates X so that 

l(l/2m)p"+Vc(x)+V(Xyx)^x(x) = Exypx(x), (2) 
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V the electron-ion potential, and Vc the Coulomb inter
actions between electrons. Subscripts on the nuclear 
coordinates (X) and momenta (P) and electronic 
coordinates (x) and momenta (p) are suppressed. 

The total Hamiltonian acting on trial wave functions 
of the form \f/x(%)$(X) gives three terms 

faW[ E (1/2M)P*+EX+ U(X)¥>(X), (3) 

- ( W V x ^ W ' V z $ ( I ) , (4) 
and 

•(^/2MMX)Vx^x(x). (5) 

If $i are chosen to be eigenfunctions of (3) with 
eigenvalue (n+^)foooi, and if (4) and (5) are small, the 
trial wave functions represent an electron-phonon 
system in which the electrons follow the nuclear motion 
adiabatically. 

Expression (4) appears in one form or another in 
Refs. 1-6. When expressed in terms of electron creation 
operators #k* it is equal to6 

a^kdk-KVK 

k,K ek—€k-K 
(6) 

where vK is a renormalized electron-phonon matrix 
element. In this form the departure of the ions from XQ, 
their equilibrium position, has been expanded in a 
Fourier series with coefficients qK; the ek are the Ex0 

and the pK are canonically conjugate to qK. This term, 
when treated as a perturbation, gives a second-order 
correction to the electronic energy 

hW\vK\*f(k)(l-f(k-K)) 
E2 =2-/ z (') 

*,* (ek-ek-KYKek-ek-,)2—AW] 

which was pointed out in Refs. 1-4. 
Expression (5) which was either considered negligible 

or completely ignored in Refs. 1-4 yields a correction 
to the energy 

£2"=E-
h2\vK 

*.« (tk—ek-K)2 
• / ( * ) ( ! - / ( * - « ) ) . (8) 

In Eqs. (7) and (8) the f(k) are electron occupation 
numbers and a spin summation has been carried out. 
This result was pointed out in Refs. 12 and 6. 
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It may be easily verified that the sum of E2 and E2" 
is 

h2\v I2 

£ 2 = E ^—— f (k)( i - f (k-K)) , (9) 
fc.it (€fc— €fc_K)2 — WO)? 

the electronic interaction energy originally derived by 
Frohlich. 

In Ref. 12 a procedure equivalent to the following is 
employed. The second-order energy, 

\vK\^{nK±.\\qK\nKYj{k){\-f{k-K)) 
W=2Y, , (10) 

due to an electron-phonon interaction of the form 
M*ak*#&-K, is expanded in powers of ho)K/ek — ek-K. Three 
terms 

Wo=Y, WktK 

\vK\*(nK±l\qK\nKYf(k)(l-f(k-K)) 

€k—€k-K 

WI=J:± whiK, 
ek—€k-K 

hW 
TF2=E Wk,„ 

(ek—ek-K)2 

are retained and an approximation is made in the 
denominator of the definition of W% to give 

hWWktK 

(ek— €k-K) (ek— ek-.lrFho)K) 

In the above nK is a phonon occupation number. 
For terms which are of particular interest—those 

which lead to superconductivity in the BCS model—the 
expansion in powers of hcoK/(ek—€k-K) is clearly not 
valid because the expansion parameter would be larger 

than unity. However, this apparent error is of little 
consequence in Ref. 12 because retaining only three 
terms in the expansion and approximating the third 
term as indicated results in an identity; 

W=Wo+Wi+W2'. 

If the three terms are examined it will be found that 
Wo is proportional to (nK+%), that W\ is independent 
of nK, and that while part of W2 is proportional to 
(^K+i), another part is not. The sum of the two terms 
independent of nK is equal to E2. The terms proportional 
to nK-\r\ are identified with a second-order change in 
phonon frequency. [A term proportional to nK-\-\ was 
omitted in obtaining Eq. (7)]. 

In Ref. 12 it is stated that the phonon frequencies 
which result from solving Eq. (3) depend on Ex and 
that Wo is equal to the change in phonon energy caused 
by the part of Ex which is quadratic in X— X0. This 
statement misses an important point of the adiabatic 
formalism—it is precisely the X dependence of E which 
renormalizes the phonon frequencies so that energy 
changes caused by this dependence are already taken 
into account if renormalized (coK °c /c, K small) rather than 
unrenormalized (o)K=the ion plasma frequency at small 
K) frequencies are used. Thus the electronic energies e* 
are to be evaluated at nuclear equilibrium, and they 
are independent of X. 

The phonon-electron interaction assumed in deriving 
Eq. (10) does not appear in any of the derivations 
considered here in a Hamiltonian with renormalized 
phonon frequencies. For this reason we feel that the 
derivation of Eq. (10) is unsound and agreement with 
this equation should not be a criterion for another 
theory. General agreement between the adiabatic 
theory and the Nakajima transformation, as modified 
by Bardeen and Pines, is indicated by the present 
argument. The relationship between these derivations 
will be discussed in more detail by one of us (RKN) in 
a separate paper. 
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